If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-100n-50=0
a = 1; b = -100; c = -50;
Δ = b2-4ac
Δ = -1002-4·1·(-50)
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{102}}{2*1}=\frac{100-10\sqrt{102}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{102}}{2*1}=\frac{100+10\sqrt{102}}{2} $
| 2(x-3)+4(x-1)=2x-3 | | n^2+100n+50=0 | | X^2+y2+8y=33 | | (D^3-D^2-11D+3)y=0 | | 2x+12=5×-24 | | x(4x+6x)=28 | | (x+0.9)(x+0.9)=4 | | 5(4s+5)=265 | | (x+0.9)(x+0.9)=0 | | 17/3-z=5 | | 2x+6.4=8 | | 6x^2+13x+28=0 | | 22=y/4+19 | | 14x+6=4x-5 | | 2+n=11* | | 5x-33=5.3 | | 3x²=49 | | 21=9z-15 | | (m+1)/3=m/7 | | 5m+3(m-2)=6m+30 | | 5m+3(m-2)=6m+39 | | 5y+2=12y-54 | | ((x+270/3)*5+100)/600=1 | | 5(w+4103)=610^4 | | 19-3m=8 | | 5y−4=3y+14 | | -3=3-2x | | x/6+11=92 | | x/4-30=-7 | | (2x)/5=(x+4)/3 | | 3a*4+20=11 | | 4+3d+4d=53 |